Energetyka słoneczna - fakty, porady, koszty

półprzewodnikowego złącza typu p-n, w którym pod wpływem fotonów, o energii większej niż szerokość przerwy energetycznej półprzewodnika, elektrony przemieszczają się do obszaru n, a dziury (nośniki ładunku) do obszaru p. Takie prz

Dodane: 06-10-2016 05:58
Energetyka słoneczna - fakty, porady, koszty ogniwa fotowoltaiczne

O konwersji fotowoltaicznej

Ogniwo fotowoltaiczne to urządzenie służące do bezpośredniej konwersji energii promieniowania słonecznego na energię elektryczną, poprzez wykorzystanie półprzewodnikowego złącza typu p-n, w którym pod wpływem fotonów, o energii większej niż szerokość przerwy energetycznej półprzewodnika, elektrony przemieszczają się do obszaru n, a dziury (nośniki ładunku) do obszaru p. Takie przemieszczenie ładunków elektrycznych powoduje pojawienie się różnicy potencjałów, czyli napięcia elektrycznego.

Po raz pierwszy efekt fotowoltaiczny zaobserwował A.C. Becquerel w 1839 r. w obwodzie oświetlonych elektrod umieszczonych w elektrolicie, a obserwacji tego zjawiska na granicy dwóch ciał stałych dokonali 37 lat później W. Adams i R. Day.

Obecnie znanych jest wiele typów materiałów umożliwiających uzyskanie efektu fotowoltaicznego. W przemyśle najczęściej wykorzystywane są ogniwa zbudowane na bazie krzemu monokrystalicznego, ale produkuje się też ogniwa oparte na krzemie polikrystalicznym, krzemie amorficznym, polimerach, tellurku kadmu (CdTe), CIGS i wielu innych. Intensywny rozwój przemysłu fotowoltaicznego w ostatnich latach pociąga za sobą duże zainteresowanie badaniami nad wydajniejszymi i tańszymi ogniwami.

Źródło: https://pl.wikipedia.org/wiki/Energetyka_s%C5%82oneczna#Uzyskiwanie_energii_z_promieniowania_s.C5.82onecznego


Warto wiedziec

Ogniwa fotowoltaiczne wykorzystywane są również w elektronice użytkowej (kalkulatory, lampy ogrodowe, oświetlanie znaków drogowych), zasilaniu układów telemetrycznych w stacjach pomiarowo rozliczeniowych gazu ziemnego, ropy naftowej oraz energii elektrycznej, zasilanie automatyki przemysłowej i pomiarowej, a także produkcji energii w pierwszych elektrowniach słonecznych. Ogniwa tego typu wykorzystywane są również w użytku domowym. Mylone są one często z kolektorami słonecznymi, które odróżniają się tym, że przekształcają energię promieniowania słonecznego w ciepło.

Fotowoltaika przeżywa intensywny rozwój: Na koniec 2006 roku na całym świecie zainstalowano 1 581 MW paneli fotowoltaicznych a skumulowana moc wynosiła 6 890 MW. Pięć lat później w roku 2011 zainstalowane zostało aż 27 650 MW baterii słonecznych a moc skumulowana urosła do 67 350 MW. Liderem w mocy zainstalowanych paneli fotowoltaicznych są Niemcy (32 380 MW mocy paneli słonecznych). Dla porównania, potencjał polskich konwencjonalnych elektrowni to około 38 000 MW.

Fotowoltaika, jako dziedzina zajmująca się wytwarzaniem energii elektrycznej ze źródła odnawialnego, za jakie w czasowej mikroskali zwykliśmy uważać Słońce, obecnie bardzo dynamicznie się rozwija i należy przypuszczać, że w niedalekiej przyszłości będzie coraz powszechniej stosowana.

Źródło: https://pl.wikipedia.org/wiki/Fotowoltaika


Efekt fotoelektryczny - za Wiki

Efekt fotoelektryczny (zjawisko fotoelektryczne, fotoefekt, fotoemisja) ? zjawisko fizyczne polegające na emisji elektronów z powierzchni przedmiotu, zwane również precyzyjniej zjawiskiem fotoelektrycznym zewnętrznym ? dla odróżnienia od wewnętrznego.

W zjawisku fotoelektrycznym wewnętrznym nośniki ładunku są przenoszone pomiędzy pasmami energetycznymi, na skutek naświetlania promieniowaniem elektromagnetycznym (na przykład światłem widzialnym) o odpowiedniej częstotliwości, zależnej od rodzaju przedmiotu.

Emitowane w zjawisku fotoelektrycznym elektrony nazywa się czasem fotoelektronami. Energia kinetyczna fotoelektronów nie zależy od natężenia światła, a jedynie od jego częstotliwości. Gdy oświetlanym ośrodkiem jest gaz, zachodzi zjawisko fotojonizacji, natomiast gdy zachodzi zjawisko fotoelektryczne wewnętrzne, mówi się o fotoprzewodnictwie.

Odkrycie i wyjaśnienie efektu fotoelektrycznego przyczyniło się do rozwoju korpuskularno-falowej teorii materii, w której obiektom mikroświata przypisywane są jednocześnie własności falowe i materialne (korpuskularne). Wyjaśnienie i matematyczny opis efektu fotoelektrycznego zawdzięczamy Albertowi Einsteinowi, który w 1905 roku wykorzystał do tego hipotezę kwantów wysuniętą przez Maxa Plancka w 1900 roku.

Źródło: https://pl.wikipedia.org/wiki/Efekt_fotoelektryczny